A natural experiment on plant acclimation: lifetime stomatal frequency response of an individual tree to annual atmospheric CO2 increase.

نویسندگان

  • F Wagner
  • R Below
  • P D Klerk
  • D L Dilcher
  • H Joosten
  • W M Kürschner
  • H Visscher
چکیده

Carbon dioxide (CO2) has been increasing in atmospheric concentration since the Industrial Revolution. A decreasing number of stomata on leaves of land plants still provides the only morphological evidence that this man-made increase has already affected the biosphere. The current rate of CO2 responsiveness in individual long-lived species cannot be accurately determined from field studies or by controlled-environment experiments. However, the required long-term data sets can be obtained from continuous records of buried leaves from living trees in wetland ecosystems. Fine-resolution analysis of the lifetime leaf record of an individual birch (Betula pendula) indicates a gradual reduction of stomatal frequency as a phenotypic acclimation to CO2 increase. During the past four decades, CO2 increments of 1 part per million by volume resulted in a stomatal density decline of approximately 0.6%. It may be hypothesized that this plastic stomatal frequency response of deciduous tree species has evolved in conjunction with the overall Cenozoic reduction of atmospheric CO2 concentrations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Foliar Responses of Olive Trees (Olea Europaea L.) under Field Exposure to Elevated CO2 Concentration

Five-year-old olive plants (cvs. Frantoio and Moraiolo) grown in large pots were exposed for seven months to ambient or high atmospheric CO2 concentration ([CO2]) in free-air CO2 enrichment facility. Exposure to elevated [CO2] enhanced net photosynthesis and decreased stomatal conductance, leading to greater water use efficiency. Stomatal density also decreased in elevated [CO2], while the rati...

متن کامل

The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions.

This review summarizes current understanding of the mechanisms that underlie the response of photosynthesis and stomatal conductance to elevated carbon dioxide concentration ([CO2]), and examines how downstream processes and environmental constraints modulate these two fundamental responses. The results from free-air CO2 enrichment (FACE) experiments were summarized via meta-analysis to quantif...

متن کامل

Complex Physiological Response of Norway Spruce to Atmospheric Pollution – Decreased Carbon Isotope Discrimination and Unchanged Tree Biomass Increment

Atmospheric pollution critically affects forest ecosystems around the world by directly impacting the assimilation apparatus of trees and indirectly by altering soil conditions, which subsequently also leads to changes in carbon cycling. To evaluate the extent of the physiological effect of moderate level sulfate and reactive nitrogen acidic deposition, we performed a retrospective dendrochrono...

متن کامل

Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy.

Models of forest energy, water and carbon cycles assume decreased stomatal conductance with elevated atmospheric CO2 concentration ([CO2]) based on leaf-scale measurements, a response not directly translatable to canopies. Where canopy-atmosphere are well-coupled, [CO2 ]-induced structural changes, such as increasing leaf-area index (LD), may cause, or compensate for, reduced mean canopy stomat...

متن کامل

Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming.

Future climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9-5.1 °C and increased VPD of 0.5-1.3 kPa on transpiration and stomatal conductance (gs ) of tree seedlings in the temperate fores...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 93 21  شماره 

صفحات  -

تاریخ انتشار 1996